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Below are presented some results of an opt ical  invest igat ion of the stress concentrat ion at the *danger points" A of a 
p la te  with a c ircular  opening stressed in tension (Fig. 1) under conditions of s teady creep. A relat ion is found l inking the 
stress concentration factor at  the "danger pointS" with the mechan ica l  properties of the medium and the nature of the 

stress state "at infinity. * The results are also app l i cab le  by analogy to a plast ic  medium 
.y with strain hardening. 

p , g  stresses at infini ty are equal  (p = q). was obtained by A. G. Kostyuk [1] for a medium with 
~ - -  Y ~ a power law of strain hardening 

. , . _  ~ si - -  B s i ~  (s i = 3/~ s ~ s ~ ) .  (1) 

Here s i is the shear strain rate,  s i is the shear stress intensity, saB are the compo-  
~ ~ ~ ~ n e n t s o f t h e s t r e s s d e v i a t o r ,  a n d B a n d m a r e m a t e r i a l c o n s t a n t s .  A n a p p r o x i m a t e s o l u t i o n  

of the problem for p = q was obtained by V. I. Rozenblyam [2] using the Tresca-Saint  
Fig. 1 Venant potent ial .  Budiansky and Mangasarian [3] give the solution for a Ramberg-Osgood 

medium. 

Attempts to solve the problem for uniaxia l  tension (q = 0) were made  in [4-6]. 

An exper imenta l  solution of the problem, based on a scheme different from that assumed h e r e ,  was presented in 
[7-10]. 

In [11] the problem was solved by the "photocreep ~ method using modets made of two kinds of transparent t echn ica l  
ce l lu lo id  of different "age. " Cel luloid  1 had an age of 1. 5 years, and ce l lu lo id  2 an age of 6 months. From ear l ie r  e x -  
periments  on ce l lu lo id  in b iax ia l  tension [12] it follows that in the state of steady (or more c0rrect ly,  quasi -s teady [13, 
11]) creep the re la t ion 

ei -= ~ ( t ) s i  exp (bsi )  (2) 

Here t is t ime,  and b a  ma te r i a l  constant. For smal l  stress intervals the s impler  relat ion (1) is appl icab le ,  in which 
case B is a function of t. 

We carried out uniaxia l  tests on specimens of the model  ma te r i a l  at  constant load and at  the same temperature  

(20~ as that at  which the models were investigated.  

The tests showed that  for ce l lu lo id  I the constant b = 0.011; for s i in the interval  from 85 to 210 k g / e m  2 i t  is pos- 

sible to take m - 2. 2. 

For ce l lu lo id  2 the constant b = 0.016; for s i in the in terval  from 100 to 180 k g / c m  z it is possible to take m --- 3. 

The models had the shape of the crosses [14] used in invest igat ing the properties of ce l lu lo id  in b iaxia l  tension [12] 

and in the exper imen ta l  solution of the problem (Fig, 1) for the case p = q, m = 2. 5 [11~ 

In the center  of the crosses, which measured 60 x 60 ram, there was a hole 7 mm in diameter;  the thickness of the 

models  was 4 mm. 

The models  were extended in a test machine  that made  i t  possible to apply  constant independent  stresses p and q to 

the arms of the cross. Thanks to the longi tudinal  notches in the arms of the cross, in the absence of a hole an almost  

uniform, s ta t i ca l ly  de te rmina te  stress state is created in the center  of the cross. 

In the exper iments  we took the following values for p and q: 

p, kg/cm2~--100 t t 4  t t 4  t00 
q, k g / c m  2 ~  0 38 76 t00 

a-=q/p-~- 0 1/3 2/s 1 
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In all  the experiments the shear stresses "at infinity" 

s ~  = r _ pq + a ~ 

were equal to 100 kg/cm z. The optical path difference 6 was measured by the Senarmon method [11] in plane-polar-  
ized light of wavelength 546 rap. The results obtained for the two points A were averaged. The conversion from 6 to 
the principal stress o~ = o, at the point A was realized by means of isochronons curves in the coordinates 8, o r These 
curves were constructed from the results of measurements of 8 in the above-ment ioned uniaxial  tests on specimens of 
the model materials. Previous investigations showed that this method of conversion is sufficiently reliable [11t the 
error is determined by the technical  characteristics of the experiment. 

The stress concentration factors k at A were computed from the formula 

k -~- cr,/p. 

Polarizat ion-optical  measurements showed that for celluloid 1 stress redistribution is complete about 25 hours after 

loading the mode l  The corresponding figure for celluloid 2 is 5 hours. Thereafter the models are in  a state of steady 

creep. The corresponding values of k are: 

= 0 1/s Vs  t 

k : 2 . 0 0  1.82 1.67 4.50 ce l lu lo id1  

k = ~ . 7 2  t .57 1.43 9.30 celluloid 9.. 

The values of k are shown by circles in Fig. 2; the dots indicate the results of [1] for a = 1, m = 2. 2, and m = 3; 

in this case the l ine 1 corresponds to the values so = 0, m = 1; the l ine 2 - celluloid 1 - to so = 1. 1, m = 2. 2; the l ine 

3 - celluloid 2 - to s o = 1.6,  m = 3; and the l ine 4 to So --*" ~, m --~ % 

It may be assumed that for a ; 1 the theoretical  and experimental  values of k 

almost coincide. Good agreement  with the data of [1] was previously obtained for 
~ , ~  a = 1, m = 2. 5 [11]. 

2 ~ We introduce the dimensionless parameter so = bsi ~. 

~':'~--':-:.7~-_~ ~.~..t~. At m = 1 the stress field coincides with the stress field in the corresponding 
- .  "" ~'~-~- l inear-e las t ic  problem [13] and we have [15] the relation k = 3 - c~ shown in Fig. 2, 

' ~ "  l ine 1. 

qJ tr An analogous situation preva i l sa t  So = 0, since then b = 0; Eq. (2) becomes 

l inear with respect to the relation between e i and s i. 
Fig. 2 

At m > 1, So > 0 the factor k again has a l inear relation with r (Fig. 2). 

As m ~ ~, a " l imit ing creep state" develops. If regions of rigid displacement are impossible (e. g . ,  at a = 1), the 

stress field in the " l imit ing creep state" coincides, for any value of the external loads, with the l imi t ing ideally plas- 

tic state [13]. Solution [16] of the ideally plastic problem for a = 1 gives k = 1. We are unacquainted with possible so- 

lutions of analogous problems for a < 1. However, there is reason to suppose that k = 1 for a l l  possible a (horizontal 
axis in Fig. 2). 

An analogous picture is also observed for So ~ ~. 

For the stress concentrat ion factor at points A we get the simple approximation formulas 

k = t +  2 - - ~  k = i + 2 - - ~  (3) 

The first of these is used in conjunct ion with relat ion (1), the second in conjUnction with relation (2). 

At so = 0 and so --~ ~ and analogously at m = I and m -~ ~ formulas (3) become exact. Their use at finite values of 
so > 0 and m > 1 leads to good results (Fig. 2, broken and dash-dot lines, respectively): 

The second of Eqs. (3) is a general izat ion of the relation k = 1 + 1 /m for a = 1, proposed by A. G. Kostyuk, which 
is in good agreement  with the exact  solution: 

m =  i t .67 3 5 0r 

k = 2  i .62 t .35 i.2~ t [fI 

k = l + t / m = 2  t .60  t .33  1.20 t .  
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At c~ >-- 2/3 the shear stress intensity in the models l ies within the range in which the assumed values of m hold 
true. For a in the range 0 < c~ < 2 /a  at points B (Fig. 1) there is a toeal  zone with a low level  of s i. Here the values 
of m differ from those assumed. The good agreement  between the results of calculat ions based on the second of Eqs. 
(3) and the exper imenta l  data shows that this has l i t t Ie  effect  on the value of k a t  A and, consequently,  that using (1) 
at a < 2/3 leads to satisfactory results. 

Further, at  et < 1/8, under conditions of e las t ic i ty  and creep,  there is a loca l  zone of compressive tangent ia l  
stresses at points B. It is assumed that  the properties of the medium in tension and compression are the same or that an 
existing difference does not affect  the value of k at A. 

There is reason to suppose that Eqs. (3) also hold true for ~ < 0, in part icular ,  in the case of pure shear (q = - p, 
~ =  - -  1). 

Equations (3) may be used for the approximate  ca lcula t ion  of the stress concentrat ion factors at the "danger points" 
in turbine disks with smal l  openings. The role of the stresses p and q is p layed by the radia l  and tangent ia l  stresses at 
points of the disk where the openings are located,  but without a l lowance for the latter,  

The max imum tensi le  stresses do not ac t  at  the edge of the opening for a l l  values of So and m. Starting from a cer -  
ta in value of so and m the "danger points" are displaced inside the region in the direct ion 0x (Fig. 1). However, the 
max imum tensi le  stress at  these points ev ident ly  differs only sl ightly from that at A. Thus, in the case of the axisym-  
met r ic  problem for the " l imi t ing  creep state" the "danger points" are loca ted  on the radius r ~ 2. 07a (a is the radius of 
the opening), and the stress at  these points is 15% greater  than that at the edge of the opening [16]. In our experiments  
the max imum tensile stress was observed at the edge of the opening. 

REFERENCES 

1. 

1950. 

2. 

1959. 
3. 

jec ted  
4. 

jec ted  

O. G. Kostyuk, "Equilibrium of an annular p la te  for a power law of strain hardening, " PMM, vol. t4,  no. 3, 

V. I. Rozenblyum, "Approximate  creep equations, ~ Izv. AN SSSR, OTN, Mekhanika i mashinostroenie,  no. 5, 

B. Budiansky and O. L. Mangasarian, "Plastic stress concentrat ion at a circular  hole in an infinite sheet sub- 
to equai  b iax ia l  t ens ion ,"  J. Appl. Mech . ,  vol. 27, no. 1, 1960. 

B. Budiansky and F. J. Vidensek, "Analysis of stresses in the plast ic  range around a circular  hole in a p la te  sub- 
to uniaxia l  tension, " NACA Techn. Note, no. 8542, 1955. 

5. A. P. Filippov, "Effect of creep on stress concentrat ion in a p la te  with a c ircular  open ing ,"  col lec t ion:  Studies 
in S tabi l i ty  and Strength [in Russian], Izd. AN UkrSSR, 1956. 

6. J. Marin, "Creep stresses and strains in an ax ia l ly  loaded pla te  with a hole, " J. Franklin Inst . ,  vol. 268, no. 1, 

1959. 
7. M. M. Frocht and R. A. Thomson, "Studies in photoplast ic i ty ,  " Proc. 3. US Nat. Cougr. Appl. Mech . ,  1958. 
8. E. MOnch and R. A. Loreck, "A study of the accuracy  and l imits  of app l ica t ion  of plane photoplast ic  exper i -  

men t s , "  Photoelast ici ty.  Proc. Int. Symposium {Chicago, 1961). Pergamon Press, 1963. 
9. A. J. Durelli  and C. A. Sc iammare l l a ,  "glastoplast ic  stress and strain distribution in a finite p la te  with a c i r -  

cular  hole subjected to unidimensional  load, " J .  Appl. Mech . ,  vol. 30, no. 1, 1963. 
10. M. Kh. Akhmetzyanov,  "Study of stress concentrat ion in a plas t ic  region using photoelas t ic  coatings, " Izv, AN 

SSSR, OTN, Mekhanika i mashinostroenie,  no. 1, 1963. 
11. I. I. Bugakov, "Investigation of the photocreep method,  " col lec t ion:  Studies in Elast ici ty and Plast ici ty  [in 

Russian], 1. Izd. LGU, 1961. 
12. I. I. Bugakov, "Creep of ce l lu lo id  under s imple loading, " PMTF0 no. 5, 1962. 

l& L. M. Kachanov, Theory of Creep [in Russian], F izmatgiz ,  1960. 
14. I. I. Bugakov, "Apparatus for testing plast ics in creep,  ~ col lec t ion:  Studies in Elast ici ty and Plast ic i ty  [in 

Russian], 1, Izd. LGU, 1961. 
15. N. I. Muskhelishvili ,  Some Fundamental  Problems in the Ma thema t i ca l  Theory of Elast ici ty [in Russian], Izd-vo  

AN SSSR, 1954. 
16. L. M. Kachanov, Fundamentals  of the Theory of Plast ici ty  [in Russian], Gostekhteorizdat ,  1956. 

29 February 1964 Leningrad 

151 


